
On Bottleneck Partitioning of k-ary n-cubes

David M. Nicol�

Weizhen Mao

The College of William and Mary

Williamsburg, VA 23185

Abstract

Graph partitioning is a topic of extensive interest, with applications to parallel processing. In

this context graph nodes typically represent computation, and edges represent communication.

One seeks to distribute the workload by partitioning the graph so that every processor has

approximately the same workload, and the communication cost (measured as a function of

edges exposed by the partition) is minimized. Measures of partition quality vary; in this paper

we consider a processor's cost to be the sum of its computation and communication costs, and

consider the cost of a partition to be the bottleneck, or maximal processor cost induced by the

partition. For a general graph the problem of �nding an optimal partitioning is intractable.

In this paper we restrict our attention to the class of k-ary n-cube graphs with uniformly

weighted nodes. Given mild restrictions on the node weight and number of processors, we

identify partitions yielding the smallest bottleneck. We also demonstrate by example that some

restrictions are necessary for the partitions we identify to be optimal. In particular, there exist

cases where partitions that evenly partition nodes need not be optimal.

�This research was partially supported by the National Aeronautics and Space Administration under NASA

contract number NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA, 23681.

i

1 Introduction

The problem of assigning workload in a parallel system has long been viewed as important, and
in the general case, as intractable. A signi�cant amount of research has addressed the problem of
�nding good, if not optimal, workload mappings; a number of di�erent objective functions have
been used. All relevant objective functions recognize that the quality of both load balance and com-
munication costs are important. While workload imbalance is generally de�ned as a large deviation
between the maximum and average load among processors, treatments of communication costs dif-
fer. A common technique is to measure the communication cost as the sum of all communication
induced by the mapping. While this sometimes leads to more tractable treatments (e.g. [?, ?]), it
does not capture the fact that communication can happen in parallel. An alternative formulation is
to assess the sum of computation and communication for each processor, and measure the quality
of the mapping as the maximum processor load, or bottleneck [?, ?]. The bottleneck measure does
not take precedence relationships into consideration, and so is most useful in highly data-parallel
computations where processors typically cycle through computation and communication phases.

In this paper we assume that a very regular graph|a k-ary n-cube[?]|describes the computa-
tion and communication needs of a data-parallel problem. Each node in the graph represents some
piece of computational work, which we assume takes w time to perform. Each edge (i; j) represents
some implicit communication necessary between nodes i and j; typically such an edge re
ects a
data dependency of node i's computation for the present iteration on the result of executing node
j in the previous iteration (and vice-versa). The edges may be viewed as communication that
must occur at the end of an iteration. We desire to partition the graph into p node sets, assigned
one per processor, so as to minimize the bottleneck cost. The problem is not entirely academic.
Several current parallel architectures have communication topologies based on the k-ary n-cube.
The problem of partitioning a communication topology arises, for instance, when one executes a
parallel simulation of tra�c on a k-ary n-cube network [?, ?].

The objective of this paper is to show that under mild restrictions on w and p, the optimal
partition is intuitive, one that equi-partitions the graph into node sets that are internally clustered
as tightly as possible. The main requirement turns out to be that p be large enough relative to the
size of the k-ary n-cube. The central point of interest is that restrictions on w and p are needed;
while intuitive, our results are not at all immediate. We also point out that previous analyses of
partitioning regular grids di�er from the current work in an subtle but important way. It is not
the objective of the paper to give new partitioning algorithms, but to clarify one's intuition about
partitioning k-ary n-cubes.

There are three bodies of work on graph partitioning that bear discussion. The technique of
recursive spectral dissection (e.g., [?]) divides a graph into two pieces, based on an eigenvalue
analysis of a matrix describing the graph connectivity. The algorithm is applied recursively until
p = 2j node sets are de�ned. Each partition cut is guaranteed to achieve a certain level of load
balance (not necessarily perfect balance), with a guaranteed upper bound on the number of edges
cut. Spectral dissection may �nd some of the partitions we identify as optimal (when k is a power
of two), but is not guaranteed to �nd them1. Recursive geometric partitioning (e.g. [?]) is similar
in spirit, but di�erent in details. A graph in Rn is projected onto the unit sphere in Rn+1, and the
projection is stretched to locate the center of mass (approximately) at the sphere's origin. A great

1Personal communication from Alex Pothen.

1

circle cut of the sphere partitions the node set into two pieces. The technique also guarantees a
certain level of load balance and bounds the number of edges cut. Like spectral partitioning, the
method may �nd the optimal partitions (in the same special case of k being a power of two), but
also may not. On the other hand, recursive binary dissection [?] (and its extension, parametric
recursive binary dissection [?]) will �nd the partitions we identify as optimal, when k is a power
of 2. In the case of general graphs there is no such guarantee. The heuristic described in [?] is
shown there to �nd optimal partitions of N2;n, and obvious extensions to heuristic described in [?]
will �nd all optimal partitions identi�ed in this paper, provided the correct number of processors
in each dimension are supplied in the problem description.

2 Problem Formulation

A k-ary n-cube Nk;n is a graph with kn nodes, with an edge de�ned between two nodes i and j

if, in the base-k number system, the expressions of i and j di�er in at most one digit, and di�er
there (modulo k) by exactly 1. Thus, if i = bn�1bn�2 � � �b0 is the base-k representation, then in
each dimension j = 1; . . . ; n, i shares an edge with i0 = bn�1bn�2 � � �(bj + 1) mod k bj�1 � � �b0 and
with i00 = bn�1bn�2 � � �(bj � 1) mod k bj�1 � � � b0. These edges are said to be in dimension j, and
i0 and i00 are said to be dimension j neighbors of i. Special cases include rings (Nk;1), hypercubes
(N2;n), two and three dimension toruses (Nk;2, Nk;3). It is useful to imagine Nk;n as a collection of
interconnected rings resident in an n-dimensional space.

A partition ofNk;n into p subdomains is a collection of nonempty node subsets P = fP0; . . . ; Pp�1g.
Abusing usual notation, we'll denote that an edge e has at least one endpoint in Pi by e 2 Pi, and
de�ne the indicator function I(e; Pi) to be one if exactly one of e's endpoints is in Pi, and zero
otherwise. Then we denote the number of external edges in Pi by

Ext(Pi) =
X
e2Pi

I(e; Pi);

denote the number of internal edges as

Int(Pi) =
X
e2Pi

(1� I(e; Pi));

and de�ne the cost of Pi as
C(Pi) = wjPij+Ext(Pi):

Here we weight the cost of each node by w to re
ect the execution cost, where the communication
cost associated with one edge is unity. The cost of P is taken as

B(P) = max
0�i<p

C(Pi):

Given p and w, we wish to �nd the partition P that minimizes B(P).
A very similar special case of this problem has been studied in the context of partitioning grids

arising from the discretization of domains for the solution of partial di�erential equations, by Reed
et al. [?]. It is instructive to consider the subtle di�erence in the problem speci�cation, because
the conclusions reached di�er greatly.

The partitions considered by Reed et al. all tessellate a two-dimensional domain (Nk;2 without
wraparound edges) with a common shape, e.g., rectangles, squares, or hexagons. The computation

2

A

B

Figure 1: Hexagon partition in a 2d mesh

to communication ratio of di�erent shapes are analyzed, but the communication cost is taken as
the sum (over all grid points in the subgraph) of the cost of communicating each boundary point.
This may vary from point to point. For instance, Figure ?? illustrates some hexes; point A has two
edges cut, but since the endpoints of both edges are in the same hex, Reed et al. count the cost as
one, not two. Point B has two edges cut, but both of these are counted. With this measure, the
communication cost of a hex is taken as 10 although 14 edges are cut. Shapes like hexagons are
shown to achieve a better computation/communication ratio than do squares. This is interesting,
because in this case our results give general conditions under which squares are optimal, a signi�cant
di�erence due entirely to a minor change in the model of communication costs.

Reed et al.'s measure makes sense in its presented context where a speci�c numerical algorithm
calls for the exchange of boundary value grid points. In other contexts unique edges from a node
represent unique pieces of information, and the cost function we adapt is appropriate. We are aware
of algorithms in computational
uid dynamics, for instance, where there is a unique \
ow" along
every edge in a mesh. Most of the grid partitioning community counts cut edges.

While our results identify general conditions under which equi-partitions are optimal for the
bottleneck measure, it is worthwhile noting that this need not always be the case. An example
that partitions a 6� 6 mesh into 3 partition elements is shown in Figure ??. Here the unbalanced
partition has bottleneck cost 28w + 10, the balanced partition has bottleneck cost 12w + 12. The
unbalanced partition is better whenever w < 6=19. This example illustrates the tension between
partitioning to minimize computational imbalance and communication overhead. Our goal is �nd
general conditions under which obvious equi-partitions are optimal with respect to the bottleneck
metric.

3

cost 28w+12
Balanced partition has

Unbalanced partition has

cost 12w+14

Figure 2: Equal sized partitions need not be optimal

3 Preliminaries

We �rst establish some preliminary results. These depend on k in a way that is captured by de�ning
Tk = 1 for k = 2, and Tk = 2 for k > 2.

Observation 1 Let A be any set of nodes in Nk;n. If jAj = m and Int(A) = v, then Ext(A) =
Tkmn� 2v.

Lemma 2 Let A be any set of nodes in Nk;n, k 6= 3, with jAj = m. Then Int(A) � (m logm)=2.
This bound is achieved when m = 2j for some j � n.

Proof: We induct onm. The base case ofm = 1 is trivially satis�ed. Suppose then that the claim
is true for any set of size m � 1 or smaller, and choose any node set A with jAj = m. Choose any
two nodes x and y in A, consider their indices expressed in base-k notation and �nd a dimension
j in which their indices di�er in that notation. Let a and b be the dimension j index for x and y

respectively. Viewing these indices as lying on a \ring" 0� 1� 2 � � � � � (k � 1)� 0, cut the ring
into two sequences of length 2 or greater, one of which contains a, and one of which contains b.
Partition A into sets Xa and Xb, with Xa comprised of all nodes whose indices in dimension j lie
in the same range as a's, and Xb = A �Xa. Let u and m � u be the number of nodes in X and
Y respectively. By the induction hypothesis, Xa has no more than (u log u)=2 internal edges, and
Xb has no more than ((m� u) log(m� u)=2) internal edges. If k = 2 or if k � 4 there can be no
more than minfu;m� ug edges between Xa and Xb, because any such edge has to connect nodes
whose indices di�er only in dimension j, and which must be adjacent on the ring we partitioned.
Any node in either set can have at most one edge to the other set. It follows that A can have no
more than

Bm(u) = (u logu)=2 + ((m� u) log(m� u))=2 +minfu;m� ug:

Now the function
fm(q) = (q log q)=2 + ((m� q) log(m� q))=2+ q

de�ned over q 2 [0; m=2] completely describes the bound as a function of q = minfu;m � ug.
Considered as a continuous function of q, analysis of derivatives reveals fm(q) to be convex over

4

[0; m=2], and is hence maximized at the endpoint q = m=2. Simple algebra shows that Bm(u) �
fm(m=2) = (m logm)=2, completing the induction. Finally, observe that the same argument holds
in the case of k = 2 by relaxing the requirement that the dimension j ring be cut into lengths of
2 or greater|there is only one cut possible, and it is still possible for a node in Xa or Xb to have
at most one edge between Xa and Xb. Finally, observe that when m = 2j , j � n, the bound is
achieved by any set A that forms a j-dimensional hypercube in Nk;n.

Another bound is also useful. We will say that set A is nowhere completed if A contains no
completed rows, i.e., no dimension j for which there are k nodes whose base-k indices all agree
except in dimension j.

Lemma 3 Let A be any set of nodes in Nk;n, k > 2, with jAj = m such that A is nowhere

completed. Then Int(A) � n(m �m(n�1)=n). This bound is achieved whenever k is divisible by q,

and m = (k=q)n.

Proof: By observation ??, maximizing Int(A) is equivalent to minimizing Ext(A); we seek a
set A0 with m nodes minimizing Ext(A0). A0 must be connected, otherwise we could always �nd a
node set with smaller external edge count by translating a connected component linearly through
Nk;n until it eliminates one or more external edges by becoming adjacent to another connected
component. Now represent the set as a \Manhattan polyhedron" (every face is parallel to some
axis) formed by a collection of unit cubes in Rn, each cube representing one node, and two cubes
sharing a face if there is an edge between the nodes they represent. Figure ?? illustrates this
construct. The number of external edges is thus equal to the number of exposed faces|the surface
area of the Manhattan polyhedron. Now the surface area Sm of any Manhattan polyhedron in
Rn is at least as large as that, say Sr, of the smallest \orthogonal polyhedron" (a rectangular
solid in Rn) that completely encloses it. Let v � m be the volume of this orthogonal polyhedron.
The polyhedron with volume v forming a perfect cube in Rn has surface area Sc � Sr. But the
orthogonal polyhedron with volume m forming a perfect cube in Rn has smaller surface area yet.
This minimal surface area is 2nm(n�1)=n � Ext(A). The claimed bound on Int(A) follows from
observation ??. Furthermore, whenever k is divisible by q, and m = (k=q)n we can construct a
(k=q)� (k=q)� � � � (k=q) cube with exactly m nodes, in which case the bounds are exact.

Our optimality results hold when the number of nodes in each partition set, m = kn=p, is
small enough to ensure that the optimal partition sets are nowhere completed. Since some internal
edges are gained by forming a completed row (due to wrap-around), simple extensions to geometric
arguments like those of Lemma ?? are not sophisticated enough to analyze these tradeo�s. However,
a simple argument shows that for sets of size m � k, the con�guration minimizing external edges
need not have any completed rows.

Lemma 4 For all k � 2n and n � 2 there exists a nowhere completed subset of k nodes in Nk;n

with minimal external edges.

Proof: When k � 2n (and n � 2), the single con�guration of k nodes that completes a row has ex-
actly 2k(n�1) external edges, whereas the proof of Lemma ?? shows that the set of k nodes which
is as cubelike as possible has no more than 2nk(n�1)=n external edges. Now 2nk(n�1)=n � 2k(n� 1)

5

Node set in 3d cube
External edges are highlighted Exposed faces represent external edges

Manhattan polyhedron

Figure 3: Geometric interpretation of a connected node set

if and only if (1=k) � (1� 1=n)n. But 1=k � 0:25 for all k � 4, and (1� 1=n)n increases monoton-
ically in n (converging to e�1) and (1� 1=2)2 = 0:25.

Proofs that optimally con�gured sets of size m > k may be nowhere completed are beyond the
scope of this note. However, we can put a lower bound on Ext(A) for jAj > k, and analyze the
relative error of this bound.

Lemma 5 Let k � 4. For all m � 2n and n � 2, let Em;n be the minimal value of Ext(A) among

all node sets A with jAj = m. Then

2nm(n�1)=n �
2m

k
� Em;n � 2nm(n�1)=n:

Proof: The upper bound follows from the observation that among all sets A that are nowhere
completed, 2nm(n�1)=n is an upper bound on Ext(A), and thus on Em;n. The lower bound follows
by subtracting from this the maximum number of external edges that may be deleted by completing
a row|two per possible row.

Now the relative di�erence between the upper and lower bound is 1�m1=n=(nk), which increases
in m. Values of m we are most interested in derive from equi-partitions where every dimension is
sliced identically. Let q divide k evenly, and let m = (k=q)n. In this case the relative di�erence is
1� 0:5=(qn). Consequently the bounds become tighter with increasing dimension size, n, and with
decreasing partition size set (k=q)n.

Let A be any set of nodes with jAj = m. From the observations above we see that

C1(m) = wm + Tkmn �m logm � C(A) for all m = 1; 2; � � � ; kn;

and
C2(m) = wm+ Tkmn� n(m�m(n�1)=n) � C(A) for all m = 1; 2; � � � ; k:

Observe that C2(m) is monotone non-decreasing, as d
dmC2(m) � 0. Another result describes the

relationship between C1 and C2.

6

Lemma 6 For all m 2 [1; 2n], C1(m) � C2(m). For all m > 2n, C1(m) � C2(m).

Proof: Analysis of derivatives with respect to m shows that C0
1(1) � C0

2(1); since C1(1) = C2(1)
we infer that initially, for x > 1, C1(x) > C2(x). Since both functions are continuous this domi-
nance is maintained until the �rst m such that C1(m) = C2(m). Algebra shows that the unique
solution m > 1 is m = 2n. At this point C0

1(2
n) � C0

2(2
n), and the dominance reverses.

4 Analysis of Cost Function

Since both C1(m) and C2(m) are lower bounds on C(m), the function C3(m) = maxfC1(m); C2(m)g
is a better composite bounding function. Previous observations have established that

C3(m) =

(
C1(m) for m � 2n

C2(m) for m � 2n
:

Furthermore, it is not di�cult to show that C3(m) is concave over m 2 [1; 2n], and that C3(m) is
increasing over m 2 [2n; kn]. Furthermore we also know that when k � 4, C3(m) is a lower bound
on the cost of node set A with jAj = m � k elements.

Our strategy now is to identify values of m � k for which it is possible to partition Nk;n into
kn=m isomorphic subgraphs, such that C(m) = C3(m). Since C3(m) is known to be increasing for
m > 2n, we determine conditions under which C3(m) is increasing over [1; 2n]. Considered as a
continuous function, the �rst derivative of C3(m) for m 2 [1; 2n] is

d

dm
C1(m) = w + Tkn � logm� 1=ln 2:

This function decreases in m, and so will be non-negative over [1; 2n] if it is non-negative atm = 2n.
The latter condition is satis�ed whenever w + n(Tk � 1) � 1=ln 2. Thus

Lemma 7 If w > 1=ln 2 or if k > 2 and n > 1, then C3(m) is everywhere monotone non-decreasing

over [1; kn].

Monotonicity of C3(m) can be exploited, for if node sets P0; . . . ; Pp�1 have sizes m0; . . . ; mp�1,
then maxfC3(m0); . . . ; C3(mp�1)g is minimized when the node sets have equal sizes. To complete
the analysis we simply identify conditions on p that ensure that C3(m) = C(Pi) for all i = 0; . . . ; p�
1, and that Nk;n can be partitioned into isomorphic node sets with this cost. Such partitions must
be optimal.

Theorem 8 The following are optimal partitions of Nk;n with respect to the bottleneck cost.

� If some condition of Lemma ?? is satis�ed, k is even, and p = kn=2j with j � n, then Nk;n

may be partitioned into isomorphic hypercubes of dimension j.

� If some condition of Lemma ?? is satis�ed, there is integer q such that (k=q)1=n is integer

and p = (k=q)(n�1)=n, then Nk;n may be partitioned into isomorphic blocks of shape (k=q)1=n�
(k=q)1=n � � � � � (k=q)1=n.

7

The partitions identi�ed by this theorem are quite intuitive. They divide Nk;n uniformly into
equally sized sets of nodes, and the nodes in a set are clustered tightly. If the number of nodes in the
set is less than 2n, the nodes form a hypercube of some dimension no greater than n. If the number
of nodes exceeds 2n (but is no greater than k), they form a perfect cube in an n-dimensional space.
However, while these optimal partitions are intuitive, we have already seen that perfectly balanced
partitions need not be optimal. It is also noteworthy that the requirement on w for optimality
disappears when p is small enough (p � k(n�1)=n), or when k > 2.

A �nal result addresses the fact that restricting the number of nodes per processor to k or fewer
may be overly conservative. For k < m � (k=2)n we can bound the deviation from optimal of cubic
equi-partitions.

Lemma 9 Let q divide k evenly, and consider the partitioning into adjacent blocks of size (k=q)�
� � � (k=q). Then the bottleneck cost is no more than 100=(nq)% larger than optimal.

Proof: Using m = (k=q) Lemma ?? shows that the increase in external communication cost of
the cubic partition is no more than 100=(nq)%.

5 Conclusions

k-ary n-cubes are regular graph structures that are found in numerous contexts, especially in
descriptions of communication networks. Partitioning of such graphs is a problem that arises in
network design, and in parallelized simulation of such networks. This paper examines the problem
of identifying optimal partitions of Nk;n with respect to the bottleneck metric. Our investigations
identify two points of interest. First, existing work on partitioning regular graphs for parallel
processing has used a subtly di�erent measure of communication, which leads to very di�erent
results than ours. Secondly, while the partitions we identify as optimal are intuitive, we show
by example that equi-partitions need not always be optimal. Our results then help to delineate
problems with intuitive optimal partitions from those with non-intuitive optimal partitions.

Open remaining problems that we are pursuing include dealing more conclusively with the e�ect
of completing rows, and with determining the minimal value of w ensuring that equi-partitions are
optimal.

References

[1] D. Agrawal, M. Choy, H.V. Leong, and A. Singh. Maya: A simulation platform for distributed
shared memories. In Proceedings of the 8th Workshop on Parallel and Distributed Simulation,
pages 151{155, July 1994.

[2] A.Pothen, H.D. Simon, and K.P. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIAM Journal of Mathematical Analysis and Applications, 11:430{452, 1990.

[3] M.J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on multipro-
cessors. IEEE Trans. on Computers, C-36(5):570{580, May 1987.

[4] S. Bokhari, T. Crockett, and D. Nicol. Parametric binary dissection. Technical Report 93-39,
Institute for Computer Applications in Science and Engineering, 1993.

8

[5] S. H. Bokhari. Partitioning problems in parallel, pipelined, and distributed computing. IEEE
Trans. on Computers, 37(1):48{57, January 1988.

[6] W. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE Transactions

on Computers, 39(6):775{785, June 1990.

[7] P. Dickens, P. Heidelberger, and D. Nicol. A distributed memory lapse : Parallel simulation of
message-passing programs. In Proceedings of the 1994 Workshop on Parallel and Distributed

Simulation, pages 32{38, Edinburgh, Scotland, July 1994.

[8] B. Indurkhya, H. Stone, and L. Xi-Cheng. Optimal partitioning of randomly generated dis-
tributed programs. IEEE Transactions on Software Engineering, SE-12:483{495, March 1986.

[9] G. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Automatic mesh partitioning. In Graph

Theory and Sparse Matrix Computation. Springer-Verlag, 1993.

[10] D. Nicol. Rectilinear partitioning of irregular data parallel computations. Journal of Parallel
and Distributed Computing. To appear.

[11] D. Nicol and W. Mao. Automated parallelization of timed petri net simulations. Technical
Report 93-91, Institute for Computer Applications in Science and Engineering, 1993.

[12] D.M. Nicol. Optimal partitioning of random programs across two processors. IEEE Trans. on

Software Engineering, 15(2):134{141, 1989.

[13] D.M. Nicol and D.R. O'Hallaron. Improved algorithms for mapping parallel and pipelined
computations. IEEE Trans. on Computers, 40(3):295{306, 1991.

[14] D. A. Reed, L. M. Adams, and M. L. Patrick. Stencils and problem partitionings: Their
in
uence on the performance of multiple processor systems. IEEE Trans. on Computers,
C-36(7):845{858, July 1987.

9

